Experimental Observation of Oceanic Convection

OxOceanClimate Seminar

Max COPPIN

26 Feb 2025

- 1. Definition of Oceanic convection
- 2. Presentation of the Coriolis platform
- 3. Forced convection experiment
- 4. Free convection experiment
- 5. Experiment in Oxford

Figure 1 : Horizontal streaks of particules illuminated by LED. The figure shows the streamline of columnar structure at the center and a baroclinic jet near the edges .

Definition of Convection

Vertical motion of a fluid parcel caused by:

• Buoyancy Force ----> Free convection

• External Force — Forced convection

Free Convection (Heat Flux)

Free Convection (Heat Flux)

Shear stress at the surface

Forced Convection (Momentum Flux)

Log layer / Ekman Layer

Forced Convection (Momentum Flux)

Forced Convection (Momentum Flux)

Erosion of the Stratification

Forced Convection (Momentum Flux)

Coriolis Platform

- Diameter: 13 m
- Weight : 350 Tones at full load
- Maximum Speed: 6 rpm
- Max water height: 1 m
- Volume: $132 m^3$

- Rossby Number U/(fL)
- Froude Number : U/(NL)
- Reynold Number: $UL/(\nu)$
- Rayleigh Number: $Ra = \frac{gaz}{r}$

Coriolis Platform

- Diameter: 13 m
- Weight : 350 Tones at full load
- Maximum Speed: 6 rpm
- Max water height: 1 m
- Volume: $132 m^3$
- Rossby Number U/(fL)
- Froude Number : U/(NL)
- Reynold Number: $UL/(\nu)$
- Rayleigh Number: $Ra = \frac{gaL}{r}$

Forced Convection Experiment

- Temperature stratification
- Temperature probes 3 Vertical profilers _
- Vertical laser sheet (30x25)cm
 - PIV Stereo (2D 3 components)

Control parameters

Friction : \mathcal{U}_* Rotation : f

Configuration 1 : Seminal Experients

FIGURE 1. The experimental apparatus.

Kato - Philips 1969 Entrainement Law

FIG. 3. Snapshots taken during the SD30-60-H66 spin-down case. (Left) Top view of instabilities in the Ekman layer developing during the initiation of the spin-down flow at t = 2 s after the flow initiation. (Right) Top view of the fully turbulent Ekman layer at t = 42 s after the flow initiation.

Observation of Forced Convection

Figure :Evolution of the vertical turbulent flux profile for an experiment without initial rotation

Figure :Evolution of the vertical temperature profile for an experiment without initial rotation

Growth of the mixed layer by momentum turbulent flux

Free / Mixed Convection

- Heated floor [290-353] kW
- Inner cylinder (5m)
- Temperature probes
 - 3 Vertical profilers
 - 2 Fixed probes (z = 0; 12cm)
- Vertical laser sheet (30x25)cm
 - PIV Stereo
- Horizontal laser sheet (3x4)m
 - PIV (z = 10cm)
 - PIV in volume (multi- layer)
- IR camera (3x4)m

Observation of Free Convection

Figure :Evolution of the vertical temperature profile for an experiment without initial rotation

Observation of Free Convection

Figure :Evolution of the norme of the velocity for an experiment without initial rotation

Organisation of convection

Figure : Surface temperature, top view, captured by infrared camera. The grey levels represent the colour bar of the temperature. White represents the warmest and black the coldest. Video accelerated by a factor of 10

<u>Temperature acquisition</u>

- Array of thermistances
- High frequency acquisition

 $T = \overline{T} + T'$ (plume signature)

Velocity acquisition

• PIV methode

 $\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'$

<u>Temperature acquisition</u>

- Array of thermistances
- High frequency acquisition

 $T = \overline{T} + T'$ (plume signature)

Velocity acquisition

• PIV methode

 $\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'$

Turbulent heat Fluxes:

