
Observation of Convection on the Coriolis Platform

M.Coppin^{1,2} B. Deremble² J. Sommeria³ ¹ Université Grenoble Alpes ² IGE UMR 5001 ³ LEGI - UMR 5519

JOURNÉE DE LA CONVECTION Avignon, 15 Novembre 2023

2 Plume Project

Coriolis Platform

- Plateform
- Instrument

4 Experiments

- Apparatus
- Non-dimensional parameter
- Experiments
- Measurements

Atmospheric convection / Oceanic convection • Data set differences

2 Plume Project

3 Coriolis Platform

- Plateform
- Instrument

4 Experiments

- Apparatus
- Non-dimensional parameter
- Experiments
- Measurements

Atmospheric convection / Oceanic convection

Oceanic convection \equiv Boussinesq Dry Atmospheric convection

Similarities Same equation inverted in the *z* axis Atmosphere: Triggered by heating in the lower layer Ocean: Triggered by Cooling on the surface

Differences

- Atmosphere:
 - $\bullet\,$ Shear stress at the surface $\to\,$ Dissipation of momentum
- Ocean:
 - $\bullet~$ Shear stress at the surface $\rightarrow~$ Input of momentum $\Rightarrow~$ Forcing

Note : This presentation does not present results but a project of experiment of Boussinesq dry convection that we interpret as oceanic convection

Atmospheric/Ocean Convection: Data set differences

Observation of convection Event

- Observations more accessible in the atmosphere than in the ocean
- Large observation database for the Atmosphere / Very poor for the Ocean

Numerical model

Atmospheric community 20 years ahead in convection parameterisation

Lab Experiments

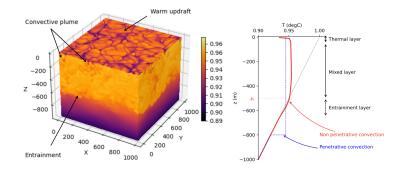
- Necessary step to study Oceanic convection
- Might be useful for the atmosphere
 - Fill the gap between observation and modelling

Atmospheric convection / Oceanic convection
 Data set differences

2 Plume Project

Coriolis Platform

- Plateform
- Instrument


4 Experiments

- Apparatus
- Non-dimensional parameter
- Experiments
- Measurements

5 Data base

Plume Project

Observation of the organisation of the turbulent structures in A convective boundary layer

Plume Project

Organisation of the structure of the convection

- Atmospheric community has deeply study organisation of the convection
- We want to scan the parameters which influence the structure of the organisation of convective plume
 - Observe the Temperature T' and vertical fluctuation w'

Parametrisation

We'd like to model turbulent closure on that used for the atmosphere

- Model $k \epsilon$
 - Turbulence is assumed fully described locally by the two quantities (k the kinetic energy ϵ the dissipation

eddy viscosity
$$u_t \sim u' l = C rac{k^2}{\epsilon}$$

Mass flux scheme closure

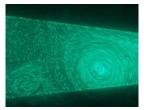
Atmospheric convection / Oceanic convection Data set differences

2 Plume Project

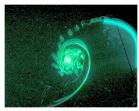
- Coriolis Platform
 Plateform
 - Plateform
 - Instrument

4 Experiments

- Apparatus
- Non-dimensional parameter
- Experiments
- Measurements


5 Data base

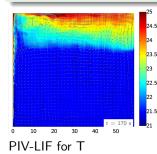
Coriolis Platform: World's largest rotating water tank

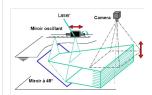


¹Credit:Cyril Fresillon/LEGI/CNRS Photothèque

Coriolis Platform: Instrument

PIV




• Imaging, 4 cameras:

- 12 bits, 60 images/sec, continuous data stream on computer disk.
- Laser:
 - 25 Watts continuous Yag laser

• Local probes:

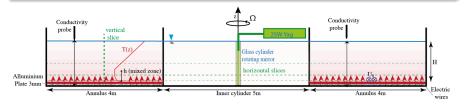
• conductimetry + temperature, acoustic Doppler profiler

- Atmospheric convection / Oceanic convection
 Data set differences
- 2 Plume Project

3 Coriolis Platform

- Plateform
- Instrument

4 Experiments


- Apparatus
- Non-dimensional parameter
- Experiments
- Measurements

5) Data base

Apparatus

Apparatus

- Annulus (inner radius = 2.5m outer radius = 6.5m)
- Water depth H = 1m
- Stratification in Temperature or/and in Salinity
- Typical azimuthal velocity : $U_{ heta} = 10 \; {
 m cm.s^{-1}}$

Heating technique

- Grill-work of electrical wire embedded in a shallow water layer
- Separated by 3mm thick aluminium sheet
- Heat flux $H \sim 500$ W.m-2

Dimensional parameter

Our hypothesis is that convection is function of :

- The **thermal** forcing *B*
- The mechanical forcing τ (unlike atmosphere)
- The stratification N²
- The Mixed Layer depth h

Influence of Earth's rotation

We suppose the **rotation** f to affect the organisation of turbulent structures

- True in the atmosphere
 - Tropical storms illustrate this on a macro scale

Non-dimensional parameters

Richardson number

- Quantify the impact of the plume on the stably stratified

zone

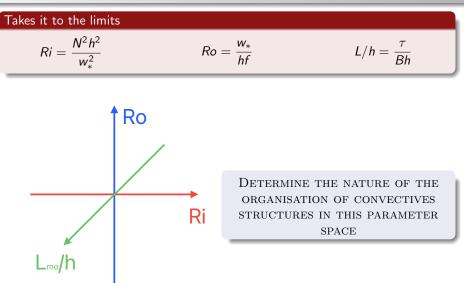
$$Ri = \frac{N^2 h^2}{w_*^2}$$
(2)

Natural Rossby number

$$Ro = rac{W_*}{hf}$$

It gives information on the impact of the earth rotation on convection.

Monin-Oboukhov scale L


$$L/h$$
 with $L = \frac{\tau}{B}$ (3)

- Define when the turbulence is driven by wind shear $\left(L/h>1\right)$ or by the thermal convection $\left(L/h<1\right)$

With B The buoyancy flux, h the MLD, w_* the velocity of the thermals, τ the shear

(2)

Non-dimensional parameters

Experiments 1 and 2

Exp 1:

No rotation and no stratification

Interest

- High *Ra* at unique aspect ratio

Objectives

- Observe the large convective cells and plumes
- Reference experience

Exp 2:

Stratification without rotation

Linear stable stratification

• In temperature (15K delta over 1m water height)

Objectives

- Influence of Ri

Exp 3: Rotation and Stratification

Rotation

- Several rotating regimes
- Minimum period of rotation
 = 60s for negligible centrifugal effects

Objectives

- Influence of Ro
- Observation of the organisation of convectives structures

Exp 4: Effects of surface shear

Shear

• Change in the tank rotation period

Objectives

- Influence of the Monin-Oboukhov scale

Measurements

Correlation W'T'

Temperature

- Time record:
 - Fixed probes
- Vertical profile:
 - 2 travelling probes
- Horizontal and vertical field:
 - Laser Induced Fluorescence (LIF)

Velocity

- Horizontal and vertical field:
 - Particle Imaging Velocimetry (PIV)

Atmospheric convection / Oceanic convection Data set differences

2 Plume Project

3 Coriolis Platform

- Plateform
- Instrument

4 Experiments

- Apparatus
- Non-dimensional parameter
- Experiments
- Measurements

The database is designed to be shared and used by interested researchers

Organisation and distribution

- Follow the FAIR principle (Findable, Accessible, Interoperable and Reusable)
 - Creation of Metadata for each datasets (experimental set-up, numerical parameter parameters etc.)
 - Use of a version control system (git)
- Promotion of open-source software tools (Python) and standards-based data formats (NetCDF)

Contact: max.coppin@univ-grenoble-alpes.fr

THANK YOU FOR YOUR ATTENTION